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Abstract 

Background: The pathologic diagnosis and Gleason grading of prostate cancer are time-consuming, error-

prone, and subject to interobserver variability. Machine learning offers opportunities to improve the diagnosis, 

risk stratification, and prognostication of prostate cancer. 

Objective: To develop a state-of-the-art deep learning algorithm for the histopathologic diagnosis and Gleason 

grading of prostate biopsy specimens. 

Design, setting, and participants: A total of 85 prostate core biopsy specimens from 25 patients were digitized 

at 20 magnification and annotated for Gleason 3, 4, and 5 prostate adenocarcinoma by a urologic pathologist. 

From these virtualslides,we sampled 14 803 image patches of 256 256 pixels, approximately balanced for 

malignancy. 

Outcome measurements and statistical analysis: We trained and tested a deep residual convolutional neural 

network to classify each patch at two levels: (1) coarse (benign vs malignant) and (2) fine (benign vs Gleason 3 

vs 4 vs 5). Model performance was evaluated using fivefold cross-validation. Randomization tests were used for 

hypothesis testing of model performance versus chance. 

Results and limitations: The model demonstrated 91.5% accuracy (p < 0.001) at coarse-level classification of 

image patches as benign versus malignant (0.93 sensitivity, 0.90 specificity, and 0.95 average precision). The 

model demonstrated 85.4% accuracy (p < 0.001) at fine-level classification of image patches as benign versus 

Gleason 3 versus Gleason 4 versus Gleason 5 (0.83 sensitivity, 0.94 specificity, and 0.83 average precision), 

with the greatest number of confusions in distinguishing between Gleason 3 and 4, and between Gleason 4 and 

5. Limitations include the small sample size and the need for external validation. 

Conclusions: In this study, a deep learning-based computer vision algorithm demon-strated excellent 

performance for the histopathologic diagnosis and Gleason grading of prostate cancer. 

Patient summary: We developed a deep learning algorithm that demonstrated excel-lent performance for the 

diagnosis and grading of prostate cancer. 
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I. INTRODUCTION 
Accurate pathologic diagnosis and Gleason grading of pros-tate cancerare essential forrisk stratification 

and appropriate management [1,2] but these tasks are time-consuming and subject to substantial interobserver 

variability [3,4]. Machine learning offers opportunities to improve the diagnosis, risk stratification, and 

prognostication of prostate cancer through enhanced classification and prediction in a variety of clinical 

applications [5]. Recent advances in deep learning methods, fueled by increased computing power and the 

availability of large data sets, have facilitated remarkable progress in the field of computer vision [6,7]. For 

instance, in the CAMEL-YON16 challenge, some deep learning algorithms demon-strated better performance 

than human pathologists at detecting breast cancer metastases in whole-slide images of lymph nodes [8]. 

Although deep learning algorithms have the potential to improve the diagnosis, Gleason grading, and 

prognostication of prostate cancer, attempts to do so have been limited [9– 14]. Moreover, to the best of our 
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knowledge, only one study used prostate core biopsy specimens for training [9]. Given that initial diagnosis and 

treatment selection are based on core biopsy pathology [15], a deep learning algorithm to improve diagnosis and 

Gleason grading specifically in core biopsy specimens would have profound clinical applications. We therefore 

conducted a pilot study to develop a deep learning algorithm for the histopathologic diagnosis and Gleason 

grading of prostate core biopsy specimens. 

 

II. PATIENTS AND METHODS 
2.1. Study cohort 

After obtaining institutional review board approval, we identified 25 patients from the Miriam Hospital 

institutional pathology database who underwent 12-core transrectal ultrasound-guided prostate biopsy from 

January 2011 to November 2012 with a diagnosis of prostate cancer. 

 

2.2. Slide digitization and annotation 

A total of 85 prostate core biopsy slides were digitized at 20 magnifi-cation using an Aperio ScanScope 

CS scanner (Leica Biosystems, Nus-sloch, Germany). Each slide was re-reviewed by a fellowship-trained 

urologic pathologist, who then annotated the slides using Aperio Image-Scope v.12.3 software (Leica 

Biosystems) for regions of Gleason 3, Glea-son 4, and Gleason 5 prostate adenocarcinoma to create pixel-level 

annotations (Supplementary Fig. 1). Benign patches were sampled from non-cancer-containing regions on the 

same slides from which cancer-containing patches were sampled to avoid model overfitting on artifac-tual 

differences between digitized slides. 

 

2.3. Development and evaluation of the deep learning algorithm 

as benign versus malignant; and (2) fine classification as benign versus Gleason 3 versus Gleason 4 versus 

Gleason 5. The sample was separated into five training and test sets, with training sets consisting of 80% of the 

slides (split by unique patients). Models were trained to minimize cross entropy between predicted class 

probabilities and ground truth labels, and we report performance on predictions from concatenated validation 

sets. 

Model performance was evaluated using fivefold cross-validation over unique patients and is reported 

as accuracy, sensitivity, specificity, and average precision (weighted area under the precision-recall curve) [17]. 

Randomization tests were used for hypothesis testing of the model performance against chance [18]. This 

involved generating a null distri-bution of the model performance by recalculating model accuracy after 

shuffling the associations between its predictions and image patch labels. Null distributions consisted of 10 000 

such simulations, and p values were calculated as the proportion of simulations that exceeded the true model 

accuracy. 

 

Models were trained and evaluated using Tensorflow v.1.5 (www.tensorflow.org). 

 

III. RESULTS 
Pathologic characteristics for the 85 annotated slides and 14 803 patches of 256 256 pixels are 

presented in Table 1. The CNN was separately trained for patch-based classification as (1) benign versus 

malignant (coarse classi-fication) and (2) benign versus Gleason 3 versus Gleason 4 versus Gleason 5 (fine 

classification). 

The model demonstrated 91.5% accuracy for coarse clas-sification of image patches as benign versus 

malignant (p < 0.001). This corresponded to sensitivity of 0.93, speci-ficity of 0.90, and average precision of 

0.95 (Fig. 1). The AUC was 0.83. 

The model demonstrated 85.4% accuracy for fine classi-fication of image patches as benign versus 

Gleason 3 versus Gleason 4 versus Gleason 5 (p < 0.001). This corresponded to sensitivity of 0.83, specificity of 

0.94, and average preci-sion of 0.83 (Fig. 2), with the greatest number of confusions in distinguishing between 

Gleason 3 and 4, and between Gleason 4 and 5. 
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Table 1 – Baseline characteristics for the study cohort of 25 patients 

 
 

 
Fig. 1 – Patch-based classification as benign versus malignant (coarse classification). 

 

From the 85 virtual slides, we sampled 14 803 image patches of 256 256 pixels in size. A patch was 

considered to contain prostate adenocarcinoma if >60% of the pixels were annotated as such. We then trained an 

18-layer-deep residual convolutional neural network (CNN; ResNet) [16] to classify each patch at two levels: 

(1) coarse classification 
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IV. DISCUSSION 

The deep learning algorithm developed in this pilot study demonstrated remarkably high accuracy in 

both coarse (benign vs malignant) and fine (benign vs Gleason 3 vs Gleason 4 vs Gleason 5) classification tasks. 

Although there was some misclassification of Gleason patterns 3, 4, and 5, as seen in the confusion matrix in 

Fig. 2, these rates were well within the rate of interobserver variability among human pathologists of 15–30% 

[3,4]. Moreover, we observed high performance for a relatively small sample size (relative to the size of 

machine learning data sets). 

Few groups have attempted to develop deep learning algorithms for the diagnosis and/or Gleason 

grading of prostate cancer, almost all using prostatectomy specimens, with modest performance reported [9–14]. 

Two groups used tissue microarrays derived from radical prostatectomy specimens to develop patch-based deep 

learning algo-rithms for prostate cancer diagnosis and Gleason grading [11,13]. Nir et al. [13] reported accuracy 

of 92% for classifi-cation of benign versus malignant and 78% for classification of benign versus low-grade 

versus high-grade (Gleason 4–5) cancer. Arvaniti et al. [11] reported precision (ie, correct prediction with at 

least one of two pathologist labels) of 58% for benign patches, 75% for Gleason 3, 86% for Gleason 4, and 58% 

for Gleason 5. Zhou and colleagues [12] used 380 pros-tatectomy whole-slide images from The Cancer Genome 

Atlas (TCGA) to differentiate Gleason 3 + 4 from 4 + 3 with accuracy of 75%. Using one of the largest 

prostatectomy-based data sets comprising 1226 annotated slides from TCGA, single-institution samples, and an 

independent med-ical laboratory, Nagpal and colleagues [14] trained a deep learning algorithm that had a mean 

accuracy of 70% com-pared with 61% among 29 general pathologists. 

Importantly, to the best of our knowledge, only one other group has trained a deep learning algorithm 

specifically using prostate core biopsy specimens. Campanella and coauthors [9] used 12 160 whole-slide 

images from prostate core biopsies to train a semi-supervised deep learning algorithm that had an AUC of 0.98. 

Their impressive results appear to stand out when compared to the performance of the prostatectomy-based 

studies discussed above [11–14]. 

Interestingly, Bartels and colleagues [19–21] reported on the development of a machine vision system 

for the diagnosis of prostate cancer and identification of cribriform pattern more than 20 years ago. Although in 

many respects the work was ahead of its time, there are important distinctions com-pared to contemporary 

methods in computer vision. 

 

 
Fig. 2 – Patch-based classification as benign versus Gleason 3 versus Gleason 4 versus Gleason 5 (fine 

classification). 
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Specifically, contemporary deep learning approaches are a form of “representation learning” that is 

entirely data driven rather than relying on individual features engineered by humans, as was common in earlier 

computer vision approaches [6]. The models are therefore not biased towards selection of particular features and 

may identify novel fea-tures that result in both better performance and application to a diverse array of image 

classification problems. 

The distinction between deep learning algorithms based on prostatectomy specimens and those based 

on core biopsy is a clinically salient one for many reasons. Specifi-cally, the initial diagnosis, risk stratification, 

and treatment decisions for men with prostate cancer are based on core biopsy pathology [15]. Accordingly, the 

performance of algorithms developed for prostatectomy specimens may not directly transfer to core biopsy 

specimens given the markedly smaller tissue specimen and potential for oblique core sampling to alter histologic 

architecture. 

There are other potential applications of a deep learning algorithm thatimproves the diagnosis and 

Gleason gradingof prostate core biopsy given its central role in the evaluation and management of prostate 

cancer. For instance, such an algorithm might expand access to expert pathologic diagno-sis not only across the 

USA but globally to regions where access to high-quality health care may be limited [22]. In settings with 

established pathologic expertise, such a system could be used to minimize human error as part of quality 

assurance/improvement efforts. Moreover, deep learning algorithms have the potential not only to recapitulate 

patho-logic diagnosis and contemporary Gleason grading systems but also to discover novel morphological 

features that are relevant to cancer prediction and prognostication, thereby improving performance. 

One important consideration for application of such a deep learning model at other centers relates to 

image preprocessing. The image patches in this study required preprocessing (ie, to have zero mean unit 

variance) and use of the model in other centers would require fine-tuning to account for potential differences in 

such parameters given potential differences in tissue preparations, microscopes used, etc. However, with such 

adjustments it should be possible, in principle, to analyze any digitized prostate biopsy specimen with the model 

developed here. 

This pilot study has a number of limitations. Foremost, it represents results from a small, single-

institution cohort; thus, the algorithm will improve with additional training data and it requires external 

validation. In addition, the algorithm produces patch-based predictions, although extension to a core-based 

system would not require sub-stantial technical modifications. Furthermore, the deep learning model was not 

trained to differentiate specific morphological subtypes of Gleason pattern 4, which may have biological 

implications. Finally, although each slide was re-reviewed by a urologic pathologist, the study would benefit 

from multiple experts to generate consensus-based ground truth labels. Despite these limitations, the pilot study 

provides compelling data supporting the feasibility and utility of a deep learning algorithm for the diagnosis and 

Gleason grading of prostate core biopsy specimens. 

Additional studies are currently ongoing to extend these results and examine other clinically relevant outcomes. 

 

V. CONCLUSIONS 
In this pilot study, a deep learning-based computer vision algorithm demonstrated excellent accuracy for 

histopatho-logic diagnosis and Gleason grading of prostate cancer. These results are encouraging for future 

clinical application of automated histopathologic diagnosis with deep learning. 
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